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Abstract  An open research question is how to define a metric on SE(n) that is
as invariant as possible with respect to (1) the choice of coordinate
frames and (2) the units used to measure linear and angular distances.
We present two techniques for approximating elements of the special
Euclidean group SE(n) with elements of the special orthogonal group
SO(n+1). These techniques are based on the singular value and polar
decompositions (denoted as SVD and PD respectively) of the homoge-
neous transform representation of the elements of SE(n). The projec-
tion of the elements of SE(n) onto SO(n+1) yields hyperdimensional
rotations that approximate the rigid-body displacements. Any of the
infinite bi-invariant metrics on SO(n+1) may then be used to measure
the distance between any two spatial displacements. The results are
PD and SVD based projection techniques that yield two approximately
bi-invariant metrics on SE(n). These metrics have applications in mo-
tion synthesis, robot calibration, motion interpolation, and hybrid robot

control.

Keywords: Displacement metrics, metrics on the special Euclidean group, rigid-

body displacements

13

J. Lenarcic and C. Galletti (eds.), On Advances in Robot Kinematics, 13-22.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



14
1. Introduction

Simply stated a metric measures the distance between two points in
a set. There exist numerous useful metrics for defining the distance
between two points in FEuclidean space, however, defining similar met-
rics for determining the distance between two locations of a finite rigid
body is still an area of ongoing research, see Kazerounian and Rastegar,
1992, Bobrow and Park, 1995, Park, 1995, Martinez and Duffy, 1995,
Larochelle and McCarthy, 1995, Etzel and McCarthy, 1996, Gupta, 1997,
Tse and Larochelle, 2000, Chirikjian, 1998, and Belta and Kumar, 2002.
In the cases of two locations of a finite rigid body in either SE(3) (spa-
tial locations) or SE(2) (planar locations) any metric used to measure
the distance between the locations yields a result which depends upon
the chosen reference frames, see Bobrow and Park, 1995 and Martinez
and Dufly, 1995. However, a metric that is independent of these choices,
referred to as being bi-invariant, is desirable. Interestingly, for the spe-
cific case of orienting a finite rigid body in SO(n) bi-invariant metrics do
exist. For example, Ravani and Roth, 1983 defined the distance between
two orientations of a rigid body in space as the magnitude of the differ-
ence between the associated quaternions and a proof that this metric is
bi-invariant may be found in Larochelle and McCarthy, 1995.

Larochelle and McCarthy, 1995 and Larochelle, 1994 presented an
algorithm for approximating displacements in SE(2) with spherical ori-
entations in SO(3). By utilizing the bi-invariant metric of Ravani and
Roth, 1983 they arrived at an approximate bi-invariant metric for pla-
nar locations in which the error induced by the spherical approximation
is of the order ﬁlf, where R is the radius of the approximating sphere
(hence the term projective displacement metric). Their algorithm for an
approximately bi-invariant metric is based upon an algebraic formula-
tion which utilizes Taylor series expansions of sine() and cosine() terms
in homogeneous transforms, see McCarthy, 1983. Etzel and McCarthy,
1996 extended this work to spatial displacements by using orientations
in SO(4) to approximate locations in SFE(3). Their algorithm is also
based upon Taylor series expansions of sine() and cosine() terms, see
Ge, 1994, and here too the error is of the order 2.

This paper presents an efficient alternative approach for defining ap-
proximately bi-invariant projection metrics on SE(n) to those presented
by Larochelle and McCarthy, 1995 and Etzel and McCarthy, 1996. Here,
the underlying geometrical motivations are the same- to approximate
displacements with hyperspherical rotations. However, an alternative
approach for reaching the same goal is presented. We utilize the sin-
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gular value and polar decompositions to yield projections of planar and
spatial finite displacements onto hyperspherical orientations.

2. Projecting SE(n) onto SO(n+1)

First, we review how spherical displacements may be used to approx-
imate planar displacements with some finite error associated with the
radius R of the sphere, see Larochelle, 1999 and Larochelle and Mc-
Carthy, 1995. This approach is based upon the work of McCarthy, 1983
in which he examined spherical and 3-spherical motions with instanta-
neous invariants approaching zero and showed that these motions may
be identified with planar and spatial motions, respectively.

Recall that a general planar displacement (a,b, &) in the z = R plane
(an element of SE(2)) may be expressed as a homogeneous coordinate
transformation (an element of H(2)),

X T cosa —sino a z
(Y)z[Ap]<y): sina  cosa b:‘(y). (1)
Z 1

0 0 R 1
Now consider a general spherical displacement in which the parame-
ters used to describe the displacement are the three angles longitude(6),
latitude(¢), and roll(¢)), see Fig. 1. Using these parameters a general
spherical displacement may be written as,
) o

X T

( Y ) = [4] ( y ) = Rot(y, 0) Rot(z, —¢) Rot(z, ) | v
zZ z

We now define @ = R as the longitudinal arc length and b= R¢ as

the latitudinal arc length. If we consider displacements in the z = R

plane and expand the trigonometric functions sine() and cosine() using

a Taylor series about 0 and substitute the angles § and ¢ from above
into the expansions then we may rewrite Eq. 2 as,

X costy —siny z

Y = siny cosvy Y

Z 0 0 1
1 0 0 0 T
R [ —dcosty —bsing  asiny —beosy -3 (&2+1‘,2) :l ( 1 )

+O(5). 3)

Note that the first term of Eq. 3 is identical to Eq. 1 and we may ap-
proximate planar displacements (a,b,) with some finite error that is
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Figure 1.  Planar Case: SE(2) = SO(3)

associated with the radius of the sphere. From Eq. 3 we make the follow-
ing identifications: & = a, b = b, and, 9 = o. Using the definition of
the arc lengths and the radius of the sphere we obtain the three angles;
6, ¢, and 1, which describe the spherical displacement on the sphere of
radius R that approximates the prescribed planar displacement: 6 =g,
¢=%, and, P =ov

Etzel and McCarthy, 1996 extended the above methodology to spatial
displacements by using orientations in SO(4) to approximate locations in
SE(3). They showed that a 4x4 homogeneous transform representation
of SE(3) can be approximated by a pure rotation [D] in SO(4),

[D] = [J (e, B, MK (9, 6, )] (4)
where,
cos 0 0 sin ¢
. —sin fsina cos 3 0 sin B cos
J(es )] = —sinycosBsina —sinysinf cosvy sinycos fcos o
—cosycosBsina —sinfcosy —sinvy cosycosffcosa
and,
0
A 0
k@.pw=| M0
0 001

The angles o, 8 and « are defined as follows: tan(a) = 4 tan(f) = é,{,i,
and tan(y) = QR-‘? where dg, dy, and d, are the components of the transla-
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tion vector d of the displacement and R is the radius of the hypersphere.
A conceptual representation, analgous to Fig. 1, can be seen in Fig. 2.

Figure 2. Spatial Case: SE(3) = SO(4) (figure from McCarthy, 1983)

3. The SVD Based Projection

This approach, analagous to the works reviewed above, also uses hy-
perdimensional rotations to approximate displacements. However, this
new technique uses products derived from the singular value decompo-
sition (SVD) of the homogeneous transform to realize the projection of
SE(n-1) onto SO(n). The general approach here is based upon prelimi-
nary works reported in Larochelle and Dees, 2002 and Dees, 2001.

Consider the space of (n x n) matrices as shown in Fig. 3. Let [T] be
a (n X n) homogeneous transform that represents an element of SE(n-1).
Note that [T] defines a point in B™. [4] is the desired element of SO(n)
nearest [T'] when it lies in a direction orthogonal to the tangent plane of
SO(n) at [4].

The following theorem, based upon related works by Hanson and Nor-
ris, 1981 provides the foundation for the projection,

Theorem 1 Given any (n x n) matriz [T] the closest element of SO(n)
is given by: [A] = [U][V]T where [T] = [U][diag(s1, s2,...,5:)][V]T is
the SVD of [T]. :

Shoemake and Duff, 1992 prove that matrix [A] satisfies the following
optimization problem: Minimize: ||[A]—[T][|% subject to: [A]T[A]—[I] =
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Figure 8.  General Case: SE(n-1) = SO(n)

[0], where [[[A] - [T]]|% = > (aij —t;4)? is used to denote the Frobenius
norm. Since [A] minimizes the Frobenius norm in R™ it is the element
of SO(n) that lies in a direction orthogonal to the tangent plane of SO(n)
at [R]. Hence, [A] is the closest element of SO(n) to [T']. Moreover, for
full rank matrices the SVD is well defined and unique. We now restate
Th. 1 with respect to the desired SVD based projection of SE(n-1) onto
SO(n), :

Theorem 2 For [T] € SE(n-1) and [T = [U)[diag(s1, 52, - - -, 8n—1)][V]T
if [A] = [U][V]T then [A] is the unique element of SO(n) nearest [T].

Recall that [T, the homogenous representation of SE(n), is full rank (
McCarthy, 1990) and therefore [A] exists, is well defined, and unique.

4. The PD Based Projection

The polar decomposition, though perhaps less known than the SVD,
is quite powerful and actually provides the foundation for the SVD.
The polar decomposition theorem of Cauchy states that “a non-singular
matrix equals an orthogonal matrix either pre or post multiplied by a
positive definite symmetric matrix”, see Halmos, 1958. With respect
to our application, for [T] € SE(n-1) its PD is [T] = [P][Q], where
[P] and [Q] are (n x n) matrices such that [P] is orthogonal and [Q] is
positive definite and symmetric. Recalling the properties of the SVD,
the decomposition of [T][U][diag(s1, 52, - -, sn—1)][V]F, yields matrices
[U] and [V] that are orthogonal and matrix [diag(si, s2, . - ., Sp—1)] which
is positive definite and symmetric. Hence, for [4] = [U][V]T we have [A]
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= [P] and conclude that the polar decomposition yields the same element
of SO(n).

5. Computational Issues

Often, the evaluation of the singular value decomposition is imple-
mented in code by computing the eigenvalues and eigenvectors of the
matrix since the singular values are the positive square roots of the
cigenvalues of [T][T]T and the columns of [U] and [V] are the normed
eigenvectors of [T][T]7 and [T)T[T] respectively. However, we are com-
puting the SVD of a homogeneous transform representing SE(n-1). The
eigenvalue and eigenvectors of SE(2) and SE(3) are well known and
should be exploited to facilitate the computations, see McCarthy, 1990.

With regard to the PD, a simple and efficient iterative algorithm exists
for its evaluation. Dubrulle, 1999 provides an algorithm that produces
monotonic convergence in the Frobenius norm that “... generally de-
livers an IEEE double-precision solution in ~ 10 or fewer steps”. A
MatLab implementation of Dubrulle’s algorithm is shown in Fig. 4.

function P=polar(T}
% inicialization
P=T;
limit = {1 + ep3s)} * sqrr{size(T,2)}:
T = inv(P*);
g = sqrt{nom(T,’fro'}/norm(P, fro')):
P=0.5%(g*P+(1/9)*T)
£ = norm{?,'fro'};
pt = inf;
%
% iteration
%
ghile (f>limit) & (f<pf}
pt = £}
T = inv{P'}:
g=sqrt{norn(T, 'fro'}/L} 2
P=0,5%(g*P+(1/g)*T) 2
f=nom (P, ‘'fro');

end
retury)]

Figure 4. Dubrulle’s PD Algorithm: MatLab Implmentation

Finally, it is important to recall that both the SVD and PD based
projections of SE(n-1) onto SO(n) are coordinate frame and unit depen-
dent. This is true for all metrics on spatial and planar displacements as
no bi-invariant metric exists, see Bobrow and Park, 1995 and Martinez
and Duffy, 1995. Note however that these mappings project SE(n-1)
onto SO(n) and bi-invariant metrics do exist on SO(n).
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6. One metric on SO(n)

One useful and easily computed metric d on SO(n) follows. Given
two elements [A;] and [Ag] of SO(n) we can define a metric using the
Frobenius norm as,

d = |- [Aal[A] ]l (5)

It is straightforward to verify that this is a valid metric on SO(n), see
Schilling and Lee, 1988.

7. Case Study-1

Consider a planar displacement (a, b, o) = (1,1,45). Its corresponding
element of SE(2) is [T] and we compute its projection [A] onto SO(3)
using either technique presented here and yield:

0.7071 0.7071 1
[T] = | 0.7071 0.7071 1 (6)
0 0 1

and
[A] = 0.5774 0.70714 0.4082
—0.5774 0.0 0.8165

It is illustrative compute the angle and axis of rotation 1 = 56.60(deg)
and s = [—0.2445 0.5903 0.7693]7, see Fig. 1. Moreover, the longitude,
latitude, and roll angles associated with [A] are: 6 = 25.56, ¢ = 24.09,
and 1 = 39.23(deg). Finally, using the definitions of the longitudinal
and latitudinal arc lengths R = 2.2674 and from Eq. 5, we have [[[T][| =
1.3409.

0.5774  0.7071 0.4082
- (7)

8. Case Study-2

Consider a spatial displacement (dg, dy, dz, 9, $,%) = (1,2,3,10, 30, 75).
We proceed as above and yield the following:

T 0.1710 —0.9737 0.1540 1.0000 1

(7] = 0.8365  0.2241 0.5000 2.0000 ®8)
—0.5206 0.0403 0.8529 3.0000

0 0 0 1

- 0.1604 —0.9584 0.0103 0.2357 T

4] = 0.8152  0.2547 0.2199 0.4714 )
—0.5526 0.0861 0.4327 0.7071

L 0 0 0 1
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and from Eq. 5, we have ||[T]]] = 2.3155.

9. Conclusions

We have presented two new methods for approximate bi-invariant
metrics on SE(n). These methods are based on projections of SE(n)
onto SO(n+1) that utilize the singular value and polar decompositions
of the homogeneous transform representations of SE(n). It was shown
that both methods yield the same projection that determines the ele-
ment of SO(n+1) nearest the given element of SE(n). Any of the infinite
bi-invariant metrics on SO(n+1) may then be used to measure the dis-
tance between any two spatial displacements SE(n). The results are
PD and SVD based projection techniques that yield two approximately
bi-invariant metrics on SE(n). These metrics have applications in mo-
tion synthesis, robot calibration, motion interpolation, and hybrid robot
control.
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